Quiz
Precalc Day 105/106

Sec. 9.3 Trigonometric Models

Ex: A utility company serves two different cities. Let P; be the power requirement in
megawatts for City 1 and P, be the requirement for City 2. Both P; and P, are functions
of t, the number of hours elapsed since midnight. Suppose P; and P, are given by the
following formulas:
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a. Describe the power requirements of each city in words.
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b. What is the maximum total power the utility company must be prepared to a
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Ex: Sketch and describe the graph of y = sin 2x + sin 3x.

Sece Coanti 677 %3 [her 2



Damped Oscillation (Read the example on pages 387-389.)

If Ao’ B, and C, and k are constants, £ > 0, a function of the form
—kt —kt
y= Aoe cos(B)+ Cory= Aoe sin(Bf) + C

can be used to model an oscillating quantity whose amplitude decreases exponentially
—kt

according to A() = Aoe where Ao is the initial amplitude. Our model for the

displacement of a weight is in this form with £ = ln 2.

A graph of the weight’s displacement

\ - assuming that the amplitude is a decreasing
exponential function of time
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Oscillation With A Rising Midline We represented a rabbit population undergoing
seasonal fluctuations by the function

R =f(t) = 10000 — 5000 cos(m/67),
where R is the size of the rabbit population t months after January. Now let us imagine a
different situation. What if the average, even over long periods of time, does not remain
constant? For example, suppose that, due to conservation efforts, there is a steady
increase of 50 rabbits per month in the average rabbit population. Thus, we could write
an equation where 10000 is the average value (constant midline) and the — 5000 cos (/6
t) is the seasonal variation. The additional 50t is the midline population increasing by 50
every month.
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Ex: Look at and read the Acoustic Beats section on pages 390-391. Discuss (with your
partners) how the solution was arrived at and your level of understanding. Can you
interpret the graph?

HW: pg 392-394 #3-6



