Sec. 9.3 Trigonometric Models

Ex: A utility company serves two different cities. Let P_1 be the power requirement in megawatts for City 1 and P_2 be the requirement for City 2. Both P_1 and P_2 are functions of t, the number of hours elapsed since midnight. Suppose P_1 and P_2 are given by the following formulas:

ing formulas:

$$P_1 = 40 - 15 \cos\left(\frac{\pi}{12}t\right) \qquad \text{and} \qquad P_2 = 50 + 10 \sin\left(\frac{\pi}{12}t\right). \qquad P = \frac{3\pi}{12} = 2\pi \cdot \frac{12}{12} = 24$$

$$\text{Addine: } y = 50$$

a. Describe the power requirements of each city in words.

P: midline: y=40 - reflected cosine - P= 2# = 2#. 12 = 24

P: starts with a 25 mm requirement at midnight, at 6 Am it is back to its average (40), at noon, it is at the maximum of 55, at 6 Pm it is down to to. It will return to the low of 25 at midnight.

Po starts at its average of 50 at midnight, rises to 60 at 6 Am, back to 50 at noon, down to 40 at 6 Pm and back to 50 at midnight.

b. What is the maximum total power the utility company must be prepared to provide? $P_1 + P_2 = 40 - 15\cos\left(\frac{\pi}{12}t\right) + 50 + 10\sin\left(\frac{\pi}{12}t\right)$ $= 90 + 10 \sin\left(\frac{\pi}{12}t\right) - 15\cos\left(\frac{\pi}{12}t\right)$ $= 90 + 10 \sin\left(\frac{\pi}{12}t\right) - 15\cos\left(\frac{\pi}{12}t\right)$ $= 10 + 100 \sin\left(\frac{\pi}{12}t\right) - 15\cos\left(\frac{\pi}{12}t\right)$ $= 10 + 100 \sin\left(\frac{\pi}{12}t\right) - 15\cos\left(\frac{\pi}{12}t\right)$ $= 100 + 100 \cos\left(\frac{\pi}{12}t\right) - 15\cos\left(\frac{\pi}{12}t\right)$ $= 100 + 100 \cos\left(\frac{\pi}{12}t\right)$ $= 100 + 100 \cos\left(\frac{\pi}{12}t\right)$

Ex: Sketch and describe the graph of $y = \sin 2x + \sin 3x$.

SEE GRAPH ON 9.3 PART Z

<u>Damped Oscillation</u> (Read the example on pages 387-389.)

If A_0 , B, and C, and k are constants, k > 0, a function of the form

$$y = A_0 e^{-kt} \cos(Bt) + C \text{ or } y = A_0 e^{-kt} \sin(Bt) + C$$

can be used to model an oscillating quantity whose amplitude decreases exponentially according to $A(t) = A e where A is the initial amplitude. Our model for the displacement of a weight is in this form with <math>k = \ln 2$.

A graph of the weight's displacement assuming that the amplitude is a decreasing exponential function of time

<u>Oscillation With A Rising Midline</u> We represented a rabbit population undergoing seasonal fluctuations by the function

$$R = f(t) = 10000 - 5000 \cos(\pi/6t),$$

where R is the size of the rabbit population t months after January. Now let us imagine a different situation. What if the average, even over long periods of time, does not remain constant? For example, suppose that, due to conservation efforts, there is a steady increase of 50 rabbits per month in the average rabbit population. Thus, we could write an equation where 10000 is the average value (constant midline) and the $-5000\cos(\pi/6)$ t) is the seasonal variation. The additional 50t is the midline population increasing by 50 every month.

$$R = 10000 + 50t$$

$$R = 10,000 + 50t - 5000 \cos(\pi/6 t)$$

Ex: Look at and read the Acoustic Beats section on pages 390-391. Discuss (with your partners) how the solution was arrived at and your level of understanding. Can you interpret the graph?